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Abstract
Excessive nutrient discharge to tropical island coastlines drives eutrophication and algal blooms with significant implications
for reef ecosystem condition and provision of ecosystem services. Management actions to address nutrient pollution in
coastal ecosystems include setting water-quality standards for surface waters discharging to the coast. However, these
standards do not account for the effects of groundwater discharge, variability in flow, or dilution, all of which may influence
the assessment of true nutrient impacts on nearshore reef habitats. We developed a method to estimate dissolved inorganic
nitrogen (DIN) loads to coastal zones by integrating commonly available datasets within a geospatial modeling framework
for Tutuila, American Samoa. The DIN-loading model integrated an open-source water budget model, water-sampling
results, and publicly available streamflow data to predict watershed-scale DIN loading to the island’s entire coastline.
Submarine groundwater discharge (SGD) was found to deliver more terrigenous DIN to the coastal zone than surface water
pathways, supporting findings from other tropical islands. On-site wastewater disposal systems were also found to be the
primary anthropogenic sources of DIN to coastal waters. Our island-wide DIN-loading model provides a simple and robust
metric to define spatially explicit sources and delivery mechanisms of nutrient pollution to nearshore reef habitats.
Understanding the sources and primary transport modes of inorganic nitrogen to nearshore reef ecosystems can help coastal
resource managers target the most impactful human activities in the most vulnerable locations, thereby increasing the
adaptive capacity of unique island ecosystems to environmental variation and disturbances.
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Introduction

On tropical islands, excessive nutrient discharge to naturally
oligotrophic coastal waters can significantly disrupt the
nearshore nutrient balance, potentially causing algal blooms

or eutrophication (McCook 1999; Morton et al. 2011). In
these environments, excessive nitrogen (N) loading, and in
particular, high dissolved inorganic nitrogen (DIN) con-
centrations significantly affect phytoplankton, turf algae,
and macroalgae growth (e.g., Smith et al. 1981; Pendleton
1995; Rodgers et al. 2015; Amato et al. 2016). Nutrient
enrichment can potentially lead to a transition from a coral-
to an algal-dominated state on reefs (Hughes et al. 2007a;
Littler et al. 2006; McCook 1999), with significant impacts
to coral reef functions and ecosystem services (Hughes et al.
2007b).

Human population and development are dominant dri-
vers of increased coastal nitrate and DIN concentrations
(e.g., Caraco and Cole 1999; Waterhouse et al. 2017).
Because coastal water DIN concentrations are reliable pre-
dictors of nearshore reef ecological condition (Comeros-
Raynal et al. 2019; Delevaux et al. 2018), management
actions often include water-quality monitoring and defining
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nutrient-based water-quality standards for terrestrial and
coastal surface waters (AS-EPA—American Samoa Envir-
onmental Protection Agency 2013; Hawai’i Administrative
Rules 2013; SWRCB—State Water Resources Control
Board 2015). Water-quality standards typically focus on
surface water pathways of nutrient transport. However, this
strategy does not account for the important effects of
nutrient transport via submarine groundwater discharge
(SGD). In tropical island settings across the globe, SGD
delivers an equivalent or significantly higher nutrient load to
coastal ecosystems than streamflow (e.g., D’Elia et al. 1981;
Moosdorf et al. 2015; Bishop et al. 2017; Shuler et al.
2019). In addition, water-quality standards are typically
defined for nutrient concentrations in environmental waters,
which may not be representative of the true impact of ter-
restrial discharge into the coastal zone, as flow rates of
streams or SGD may vary greatly. Instead, nutrient loading
provides a better indication of how nutrients in terrestrial
discharge impact nearshore reef ecosystems. While esti-
mation of loads can be complicated by factors such as
hysteresis (Lloyd 2016) or biases such as heteroscedasticity
and seasonal variability in regression models (Hirsch 2014),
in its most basic form, coastal nutrient loading is typically
calculated by multiplying nutrient concentration by water
discharge rate (e.g., Swarzenski et al. 2013; Pellerin et al.
2014; Delevaux et al. 2018). There are also many other
factors affecting the fate of dissolved nutrients upon
reaching the ocean, such as wind, nearshore circulation, and
wave-driven currents. Also, the specific benthic habitat and
substrate, as well as the water column depth at stream and
coastal groundwater spring outlets, may be a factor in the
ecosystem’s response to any given nutrient load (Moore
2010). While it is beyond the scope of this study to con-
strain these influences as well, improving estimates of ter-
restrial nutrient loading is one important step in developing
a holistic understanding of how human land use affects the
coastal zone.

In this study, we integrated commonly available datasets
within a geospatial modeling framework designed to esti-
mate island-wide DIN-loading rates at a watershed scale.
We developed a DIN-loading model for Tutuila, American
Samoa, by combining output from an existing Tutuila-based
open-source water budget model, existing water sample
data for 1 year from nearly a third of the island’s numerous
watersheds, and publicly available streamflow data. We
then identified the most impacted watersheds and prioritized
the impact from different nonpoint sources to inform
nutrient-management efforts on Tutuila. This was accom-
plished by summarizing model results through a newly
developed watershed-impact ranking score to help coastal
and terrestrial land managers assess which of the island’s
watersheds are subject to the greatest anthropogenic
impacts, based on DIN loads. We examined the relative

importance of different hydrologic pathways (e.g., base-
flow, surface runoff, and SGD) as nutrient-transport
mechanisms, and the impacts of loading from individual
nonpoint DIN sources, including wastewater, livestock
manure, and agriculture, were also assessed. Finally, we
directly related the results of the nutrient-loading model to a
management decision-making framework through stake-
holder engagement and by producing innovative and open-
source model outputs, thereby improving accessibility,
reproducibility, and transparency to benefit stakeholders
and others who may wish to apply this method in different
locales.

Methods and Model Inputs

Study Location

The island of Tutuila is the largest and most populous island
in the Territory of American Samoa (Fig. 1). Tutuila is
located in the South Pacific Ocean near the coordinates of
14° 20′S and 170° 40′W and has a land area of 142 km2 and
a population of 56,000 (AS-DOC—American Samoa
Department of Commerce 2013). Tutuila’s climate is warm
and humid, and due to its position within the South Pacific
Convergence Zone, the island receives significant rainfall,
between 180 and 500 cm/year, depending on location and
elevation (Daly et al. 2006). The majority of Tutuila’s
human development is located on the Tafuna–Leone Plain,
with development off the plain concentrated on narrow
strips of coastal land and in steep-sided valleys. The three
primary nonpoint nutrient sources previously identified on
Tutuila include on-site wastewater disposal systems
(OSDS), piggeries (small backyard-scale livestock-rearing
operations), and agricultural fertilizers (Shuler et al. 2017).

Modeling Framework

Our Tutuila DIN-loading model accounted for three
hydrologic pathways from land to sea, including (1) stream
baseflow from shallow aquifers, (2) surface runoff gener-
ated during rainfall events, and (3) SGD into the coastal
zone. The anthropogenic DIN sources accounted for in the
model were OSDS, livestock pigs, and synthetic fertilizer
inputs to agricultural lands. The model followed a four-part
workflow (Fig. 2). First, we used an existing open-source
Tutuila-based water budget model calibrated with historical
streamflow data, to calculate island-wide water discharge
rates from all three hydrologic pathways. Second, we
multiplied measured DIN concentrations in each hydrologic
pathway by water discharge rates from the previous step to
calculate observed DIN loads. For the third step, we used
high-resolution geospatial data to calculate the prevalence
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of anthropogenic DIN sources in every watershed by
identifying the total numbers of OSDS units, numbers of
pigs, and estimated synthetic fertilizer inputs to agricultural
lands within each watershed. Finally, we used the coastal
DIN-loading model, which was calibrated with the mea-
sured DIN fluxes, to calculate a modeled DIN discharge rate
for each of the island’s watersheds. Watershed boundaries
were defined by using boundaries in an existing dataset
(AS-DOC—American Samoa Department of Commerce
2002) and merging nonsampled subwatersheds. This

resulted in a total of ninety-three individual watersheds
considered by the model.

Step 1. Island-Wide Water Discharge Rates from All
Three Hydrologic Pathways

Annual island-wide water discharge rates to the coastal zone
were estimated for all hydrologic pathways (i.e., stream
baseflow, surface runoff, and groundwater discharge) using
an existing water budget model developed for Tutuila

Fig. 2 Schematic of DIN-loading model workflow. The SWB2 com-
ponent represents the water budget model used to determine water
discharge rates, and observed streamflow and nutrient fluxes are from
field data used to calibrate and validate the model. The DIN release

rates were initially parameterized with values from Shuler et al. (2017),
and the final rates were determined through loading model calibration.
Steps marked with Xs indicate multiplication of values used to cal-
culate derived components

Fig. 1 Study location map of Tutuila Island showing the location of the Samoan Archipelago, and hill-shaded topography of Tutuila
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(Shuler and El-Kadi 2018). The water budget model used
the Soil–Water Balance 2 (SWB2) code (Westenbroek et al.
2018), originally developed by the U.S. Geological Survey
(USGS), which is based on the soil–water balance for-
mulation of Thornthwaite–Mather (1955). The Shuler and
El-Kadi water budget model is publicly accessible, pub-
lished under an open-access license, and is available for
download by following the link in Shuler and El-Kadi
(2019). The model can be easily modified to develop esti-
mates of discharge from any hydrologic pathway within
user-set geographic boundaries. Inputs to the Tutuila Water
Budget Model included precipitation data (Daly et al.
2006), land use data (Meyer et al. 2016), soil-type data
(Nakamura 1984), spatially distributed estimates of direct
infiltration (Shuler et al. 2017), runoff-to-rainfall ratios
(Shuler and Mariner 2019), potential evapotranspiration
data (Izuka et al. 2005), maximum and minimum tem-
perature data (Daly et al. 2006), and mountain front
recharge information (Izuka et al. 2007). The model output
included island-wide estimates of water budget compo-
nents, including precipitation, evapotranspiration, runoff,
streamflow infiltration, and groundwater recharge (GW-R).
Shuler and El-Kadi (2018) provide detailed information
regarding the construction of the water budget model.

Because SWB2 was not originally developed to model
subsurface processes, it does not partition the recharge
fraction into baseflow or SGD components. We did this
partitioning outside of the SWB2 model by calculating the
average baseflow to recharge ratio in watersheds where
stream- gaging data were available, and applied this ratio to
the SWB2-calculated recharge to estimate baseflow and
SGD rates in all watersheds. We computed average–annual
baseflow discharge (Q-BF) rates in the gauged basins by
applying a commonly used baseflow separation tool (Wahl
and Wahl 1995) to existing streamflow data from 15
watersheds (Online Resources Fig. OR1 and Table OR1).
We obtained streamflow data from two sources, historical
USGS data (Wong 1996; Perreault 2010; https://waterdata.
usgs.gov/nwis), and a local streamflow measurement net-
work (American Samoa Power Authority and University of
Hawaii; Shuler and Mariner 2019).

In each of the gauged watersheds, we then calculated the
ratio of Q-BF to the SWB2-modeled GW-R rate for these
watersheds to determine a Q-BF/GW-R ratio for each. To
account for the amount of water pumped from municipal
wells in each watershed (Online Resources Table OR3;
ASPA–American Samoa Power Authority 2017), the cal-
culation of GW-R also necessitated subtraction of the
annual average pump rates of all wells in each watershed.
For the watersheds with available stream gauge data, the
measured Q-BF/GW-R ratios ranged from 0.08 to 0.49 and
the weighted average (weights based on streamflow data
period of record) from all gauged watersheds was 0.33 ±

0.17, which can be interpreted to mean that an estimated
33 ± 17% of the island’s recharge discharges to the ocean as
baseflow in streams, and 1.0–33% or 67% discharges as
SGD, assuming that the system is at steady state and all
recharge not discharged as baseflow discharges as SGD. We
applied this average ratio to the SWB2-calculated GW-R in
ungauged watersheds to estimate island-wide SGD and
baseflow rates, respectively. This method was used to cal-
culate island-wide modeled SGD and baseflow rates for all
of Tutuila’s watersheds, except for those located on the
Tafuna–Leone Plain (Fig. 1), where no perennial streams
flow, and young and fractured lava flows promote rapid
infiltration and high aquifer permeabilities (Bentley 1975;
Izuka et al. 2007). Therefore, we classified 100% of the
SWB2-calculated net infiltration as SGD in the plain area.

Uncertainties on water fluxes were determined in dif-
ferent ways for each pathway. The above calculated 17%
uncertainty represents the standard deviation of the weigh-
ted average Q-BF/GW-R and SGD/GW-R ratios for all
gauged watersheds. However, we also compared a set of
independently calculated, snapshot-resolution SGD mea-
surements from four of Tutuila’s bays (Shuler et al. 2019),
which suggested that this uncertainty may be too low.
While comparison between SGD rates as calculated by this
study and from Shuler et al. (2019) suggests that our
SWB2-estimated SGD fluxes are reasonable (Online
Resource Table OR2), the relative percent difference
between the two datasets was 48%, which is significantly
higher than the aforementioned 17% uncertainty. The
Shuler et al. (2019) data are the only available information
for validating these estimates, and comparison to the mea-
sured SGD rates is the most conservative way to determine
the uncertainty on our SGD/baseflow partitioning. There-
fore, we used 48% as the uncertainty on our SWB2-
calculated SGD and baseflow rates. Uncertainty on
SWB2 surface runoff rates could be directly calculated
because SWB2 does directly calculate surface runoff frac-
tions. Comparison between baseflow-separated measured
flows and the SWB2- calculated surface runoff totals
(Online Resource Fig. OR2) yielded a mean absolute per-
centage error of 21%, which was used to represent the
uncertainty on the SWB2 surface runoff values.

Step 2. Measured DIN Fluxes

Water Sampling and Nutrient Concentrations

We obtained existing water-quality data from stream and
coastal spring samples taken throughout Tutuila by Comeros-
Raynal et al. (2019), Shuler et al. (2017, 2019), and Shuler
(2019). Stream data from Comeros-Raynal et al. (2019) were
collected monthly from 38 stream sites for a 1-year period
from September 2016 to September 2017 (Fig. 3), and
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consisted of a total of 424 individual stream samples. Stream
samples were collected at low tide and were taken at stream
outlets to ensure that samples were representative of the
discharge directly affecting coastal waters. A staff gauge was
installed at each site to document the water height (stage)
during sampling. While we lacked rating curves to estimate
streamflow from the stage measurements, these data provided
a relative measure of the flow. To distinguish between
baseflow and surface runoff flow regimes, we used the
baseflow separation tool discussed for step 1, to quantify the
percentage of time-measured streams were under baseflow
conditions (defined as days when baseflow discharge
exceeded surface runoff discharge) or surface runoff condi-
tions. The average percentage of time Tutuila streams ran
under baseflow conditions was 68%, which is reasonable
considering Bassiouni and Oki (2013) found that in Hawaii,
perennial streams run under baseflow conditions between 60
and 80% of the time. Therefore, we used the 68th percentile
of the stage height record at each sample site to classify each
sample as either a surface runoff sample (if taken at a stage
above this threshold) or a baseflow sample (if taken at a stage
below this threshold).

The Comeros-Raynal et al. (2019) dataset also included
coastal spring samples collected from 26 locations around
Tutuila (Fig. 3), with sampling conducted approximately
every 3 months. We grouped additional coastal spring
data collected at 31 locations from 2013 to 2018 (Shuler
et al. 2017, 2019) with the Comeros-Raynal coastal spring
data to supplement the groundwater end-member dataset
(Fig. 3) for a total of 81 coastal spring samples. All stream
and coastal spring samples were analyzed for nitrate

(NO3
–), nitrite (NO2

–), and ammonium (NH4
+) con-

centrations, which when summed, represent the DIN
concentration. See Shuler (2019) and Comeros-Raynal
et al. (2019) for more detailed sampling and nutrient
analysis methodologies.

Observed DIN Loads

We calculated the observed watershed-scale DIN loads by
multiplying measured DIN concentrations with water dis-
charge rates. These DIN loads were then used to calibrate
the nutrient-loading model. Because most water-sampling
sites were sampled repeatedly, DIN concentrations at each
site were grouped by hydrologic pathways (surface runoff,
baseflow, or SGD), and the average DIN concentrations for
each pathway at each site were individually calculated. To
estimate the average individual DIN-loading rates for each
sampled pathway in every sampled watershed, we multi-
plied the average DIN concentrations by pathway-specific
SWB2-modeled water fluxes for each watershed. Of the
ninety-three (93) watersheds delineated for this project,
thirty-four (34) were sampled for surface water nutrients,
and coastal springs were sampled in twenty-two (22).
However, of these, only thirteen (13) were sampled for both
surface waters and coastal springs (Fig. 3), partially due to
the fact that hydrogeologic regions with more SGD (i.e.,
more prevalent coastal springs) often have fewer surface
water features. Therefore, the total observed coastal DIN
fluxes (summed from all three pathways) could only be
calculated in these thirteen watersheds. All observed
watershed-scale DIN fluxes for each hydrologic pathway

Fig. 3 Locations of stream and coastal spring sample sites shown as yellow circles and blue triangles, respectively, with shaded model watersheds
draining to each site. Model-designated watershed ID numbers are also shown for reference
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are presented in Table 1. Uncertainties on total DIN loading
were calculated by propagating error from the SWB2 fluxes
(as described in step 1) and the standard deviation of DIN
concentrations in sample waters.

Step 3. Identification of Terrestrial DIN Sources

We considered four terrestrial DIN sources as drivers for the
model: three anthropogenic sources (OSDS, piggeries, and

Table 1 Watershed-scale DIN-loading rates calculated with observed nutrient concentrations (Comeros-Raynal et al. 2019) and SWB2-calculated
water fluxes (Shuler and El-Kadi 2019). Values in parentheses represent uncertainties propagated from error associated with SWB2 fluxes and the
standard deviation of DIN concentrations in sample waters. Watershed ID numbers reference those shown in Fig. 3

Watershed ID,
Watershed name

Baseflow DIN
load [kg/d]

Runoff DIN
load [kg/d]

SGD DIN
load [kg/d]

Total DIN
load [kg/d]

0, Leone 0.21 (0.18) 0.14 (0.04) 1.88 (1.15) 2.23 (1.17)

1, Amanave 0.02 (0.01) 0.11 (0.08) – –

2, Nua–Seetaga – – 0.21 (0.16) –

4, Amanave 0.04 (0.03) 0.19 (0.13) 0.30 (0.22) 0.53 (0.25)

5, Afao–Asili 0.23 (0.13) 0.30 (0.13) – –

9, Fagaalu 0.75 (0.60) 0.70 (0.63) 3.98 (2.63) 5.44 (2.77)

13, Fagamalo 0.09 (0.06) 0.30 (0.11) – –

17, Leone 1.85 (1.45) 2.09 (1.44) – –

18, Maloata 0.31 (0.18) 1.49 (1.31) – –

21, Matuu–Faganeanea 0.19 (0.17) 0.24 (0.08) – –

24, Nua–Seetaga 0.24 (0.35) 0.33 (0.14) 1.03 (0.57) 1.60 (0.69)

25, Nuuuli Pala 0.12 (0.08) 0.20 (0.05) – –

33, Poloa 0.13 (0.12) 0.29 (0.12) 0.41 (0.28) 0.83 (0.32)

35, Alega 0.33 (0.23) 0.33 (0.20) 1.11 (1.05) 1.78 (1.09)

40, Fagaitua 0.15 (0.09) 0.08 (0.03) – –

41, Fagaitua 0.09 (0.08) 0.07 (0.07) – –

43, Fagaitua 0.05 (0.04) 0.03 (0.02) – –

46, Amouli 0.11 (0.20) 0.04 (0.01) 0.39 (0.22) 0.53 (0.30)

51, Amouli 0.05 (0.05) 0.04 (0.01) – –

58, Aoa 0.25 (0.17) 0.16 (0.12) 0.82 (0.63) 1.23 (0.67)

60, Aoa 0.21 (0.19) 0.16 (0.04) – –

61, Fagaitua 0.17 (0.21) 0.03 (0.01) – –

62, Fagaitua – – 0.91 (0.47) –

63, Fagaitua 0.05 (0.04) 0.06 (0.05) – –

65, Fagatele–Larsen – – 18.96 (14.2) –

66, Fagatele–Larsen 0.06 (0.04) – 0.09 (0.06) –

67, Laulii–Aumi 0.29 (0.21) 0.41 (0.14) 4.92 (3.53) 5.62 (3.54)

70, Masausi 0.03 (0.02) 0.03 (0.01) – –

73, Masausi 0.05 (0.04) 0.04 (0.01) – –

74, Masefau 0.54 (0.34) 0.74 (0.59) – –

75, Afono 0.50 (0.41) 1.13 (0.80) 3.28 (1.34) 4.91 (1.61)

76, Vatia 0.12 (0.07) 0.19 (0.08) – –

77, Pago Pago Harbor 1.03 (0.87) 3.36 (2.41) 4.72 (2.84) 9.11 (3.83)

82, Fagasa 0.29 (0.20) 0.53 (0.18) – –

85, Fagasa 0.76 (0.59) 0.56 (0.14) – –

88, Nuuuli Pala – – 47.37 (25.8) –

89, Afono 0.07 (0.06) – 0.39 (0.16) –

90, Vatia 0.16 (0.12) 0.28 (0.11) 0.78 (0.47) 1.22 (0.50)

91, Vatia 0.63 (0.55) 1.21 (1.51) 2.28 (1.48) 4.12 (2.18)

92, Vatia 0.07 (0.05) 0.12 (0.06) – –

98, Leone – – 85.47 (98.4) –

Environmental Management (2020) 66:498–515 503



agricultural fertilizer input), and DIN from natural sour-
ces such as leaf litter, animal waste, and atmospheric
deposition (Savoie et al. 1987; Shuler et al. 2017). To
resolve the spatial distribution of anthropogenic DIN
sources to the watershed scale, we obtained the locations
of every OSDS unit, every pig, and all known agricultural
land on the island, and geospatially intersected these
anthropogenic DIN sources with the watershed bound-
aries (Fig. 4). The OSDS units were located using the
methods of Shuler et al. (2017), by identifying all
buildings located more than 50 m from a sewer main or
service line and under 120 m2 in size. These buildings
were assumed to rely on an OSDS unit for wastewater
disposal. Small buildings were excluded since sheds or
outbuildings typically do not contain facilities requiring
an OSDS unit. Building locations were obtained from the
American Samoa Department of Commerce (AS-DOC—
American Samoa Department of Commerce 2009), and
sewer line locations were obtained directly from ASPA.
Locations of piggeries and the number of pigs in each
was obtained directly from the American Samoa Envir-
onmental Protection Agency (AS-EPA). While there
exists no direct data regarding fertilizer application in
American Samoa, we considered agricultural areas from
land use map of Meyer et al. (2016) to be the most likely
locations for fertilizer applications. To initialize the
model calibration, we used DIN release rates from Shuler
et al. (2017) for the equivalent source activities on
Tutuila.

Step 4. Model Calibration Process

We calibrated the DIN-loading model by parameterizing an
individual DIN release rate for each of the anthropogenic
sources. Parameter optimization was performed using the
Nelder–Mead unconstrained minimization method (Nelder
and Mead 1965). The optimization was implemented in
Python using the scipy.optimize.minimize function (https://
docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.
optimize.minimize.html). The selected objective function
was a linear regression between calculated and modeled
nutrient loads, with the slope of the regression fixed at 1, so
the optimization would be forced to minimize error without
biasing the model toward over- or underprediction, which
could occur with an unconstrained least-squares regression.
We note that this optimization step acts as a “black-box” to
conceptually represent all attenuation and N-transformation
processes between sources and sinks, by using a single
lumped parameter for each DIN release rate. In reality, these
processes are complex, nonlinear, interdependent, and
spatially distributed, which makes it extremely difficult to
model them directly.

Watershed Prioritization Ranking

Absolute DIN loads from each watershed are fundamentally
biased toward watershed size, as larger watersheds contain
larger numbers of individual sources and thus produce more
DIN. To control for this “area bias”, modeled loads were

Fig. 4 Locations of DIN sources used as model input. Initial DIN release rates from Shuler et al. (2017) were 0.021-kg-DIN/day per OSDS unit,
0.0381-kg-DIN/day per pig, 0.77-kg-DIN/day per km2 of agricultural land, and 0.36-kg-DIN/day per km2 of natural land
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scaled by watershed area and coastline length. Area-scaled
loads essentially show the density of sources, which are
more representative of human effects within terrestrial
areas. Source density may also contribute to nonlinearity in
the amount of DIN transported from source to sink, as
higher source densities may overwhelm the natural
attenuation capacity of soils or riparian zones. However,
area scaling still does not provide the representation of how
source waters are affected by dilution upon discharge to
coastal areas. One way to more accurately predict
terrestrial–hydrologic impacts on coastal waters is to scale
absolute DIN loads by the coastline length of each water-
shed, although this method does not capture the effects of
oceanographic circulation and biological activity, which
were beyond the scope of this modeling effort to consider.
Also, coastline-length scaling is biased by the selection of
watershed boundaries, whereas watersheds fronted by more
convex parts of the island coastline will have longer
coastlines, and watersheds fronted by more concave coast-
lines will have much shorter coastlines, in some cases sig-
nificantly increasing the length-scaled DIN release rates. In
reality, both of these metrics provide a different and unique
presentation of impacts, while at the same time being lim-
ited by different biases.

To incorporate information from both of these metrics,
we developed a single watershed prioritization scheme to
synthesize the information from each scaling method into a
single metric. The ranking scheme was developed by cal-
culating the island-wide means of the area-scaled loads, and
coastline-length-scaled loads, and computing anomalies
from the island-wide mean for the two metrics in each
watershed. Anomalies were ranked from 1 to 93 with the
highest absolute anomaly (i.e., the highest DIN impact)
from each metric getting assigned the lowest rank. These
ranks were then summed, and the sums were ranked from 1
to 93 to incorporate the importance of each metric into a
single prioritization-ranking score, again with the lowest-
scoring watersheds being the ones with the highest degree
of impact.

Sensitivity Testing

To examine sensitivity within the optimization routine to
each of the starting values for anthropogenic DIN release
rates, we ran sensitivity tests on the model calibration by
calculating island-wide DIN loading for a variety of “sce-
narios” representing a shift in the starting values for each of
the individual DIN release rates. Loading rates for OSDS,
pigs, and agricultural sources were independently reduced
to 1/10th, 1/5th, and half of the base value, and were also
increased by 2 times, 5 times, and 10 times. A fourth set of
scenarios was also run where all three starting values were
modified by the aforementioned shifts at the same time.
Sensitivity test results were compared by computing the %
difference between the scenario and the base case for island-
wide DIN loading. The results showed the optimization is
fairly robust for values within an order of magnitude of the
base case (Table 2). The model performance started to
diverge from the base case, once the starting values were
increased 5–10 times.

Management Decision-Making Framework

To maximize the potential for integration of this work into
management decision-making, we conducted numerous
conference calls with representatives from American
Samoan Government agencies, including AS-EPA, the
National Marine Sanctuaries, and the Coral Reef Advisory
Group to obtain their input in prioritizing the desired out-
puts of the loading model. This model is one component
within a larger Ridge to Reef project sponsored by the
American Samoa EPA that is also focused on revising cri-
teria for setting water-quality standards and formalizing
links between land use impacts and resilience indicators on
adjacent coral reefs. We implemented the modeling process
using an open-source platform to make the results as
integrable with other components of the project and also as
readily accessible to other coastal managers as possible. The
model workflow is documented as an interactive Jupyter

Table 2 Sensitivity test results for assessment of sensitivity of input parameters to model optimization. Starting DIN release rates for each of the
individual anthropogenic sources were varied independently and together for a total of six different values of relative changes, ranging from
1/10th to ten times the base value

Change in starting values for loading rates

Percent change in modeled loading 1/10 1/5 1/2 Base ×2 ×5 ×10

Resulting change in modeled output: island-wide DIN loading

All parameters changed −1.6% −2.5% −0.9% 0.0% 1.9% 5.8% 17.5%

Only OSDS loading changed −4.7% −3.3% −1.1% 0.0% −1.6% 1.1% 0.6%

Only piggery loading changed −2.3% 0.4% 0.3% 0.0% 0.2% 0.5% 0.4%

Only Ag loading changed −0.7% −0.4% −0.5% 0.0% 0.6% 11.9% 35.0%
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Notebook (Kluyver et al. 2016) that contains results and
explanations, as well as fully executable code, which can be
used to reproduce or modify the model output. We made all
model input data, code, and results available to anyone,
including stakeholders or other researchers in an open-access
repository (https://doi.org/10.5281/zenodo.3462869). These
resources were developed to be understandable and acces-
sible to stakeholders through publication-quality annotation
and inclusion of metadata. Developing the project in an
open-source framework provides for easy reproduction and
update of the nutrient-loading model as additional water-
sampling data, better-constrained land use data, or other
management considerations become available in the future.

Results

Modeled DIN Loads

The DIN-loading model provides calibrated estimates of
coastal DIN loading for every watershed on the island, and
allows partitioning of the loads into each of the modeled
nutrient source components. Calibration resulted in the final
modeled DIN release rates of 0.041-kg-DIN/day per OSDS
unit, 0.009-kg-DIN/day per pig, and 0.484-kg-DIN/day per
km2 of agricultural land. Multiplication of these release
rates by the number of anthropogenic DIN sources in each
watershed yielded absolute loading rates ranging from 0.1-
kg-DIN/day (0.3-kg-DIN/day per km2) for some of the
smallest watersheds, to 92.5-kg-DIN/day (8.4-kg-DIN/day
per km2) for the most impacted watershed on the
Tafuna–Leone Plain. When error was minimized by the
optimization routine, the model’s mean average error
(MAE) was ±1.09-kg-DIN/day and the r2 of the regression
was 0.74 (Fig. 5). Comparing observed and modeled DIN
loads yielded an MAE of ±1.09-kg-DIN/day, which if
divided by the modeled loading rate for the 13 watersheds
used for calibration, yields an average percent error of 74%.
For comparison between watersheds, DIN-loading rates
were scaled both by watershed area (Fig. 6) and by length of
watershed coastline (Fig. 7). These approaches remove the
watershed-size dependence of absolute loading rates, and
are more representative of the relative impact of DIN
sources within each watershed on the terrestrial landscape
or in the coastal zone.

Because we considered each of the modeled DIN sources
separately, their relative impact on the total load could be
separated and examined. The fraction of the total DIN
loading originating from each of the individual sources is
shown graphically in Fig. 8, where the total modeled DIN
loads from each watershed are shown in the upper-left
panel, and the other three panels (clockwise from upper
right) show the proportion of DIN loaded to each watershed

from OSDS units, pigs, and agriculture, respectively. When
summed, island-wide, model-estimated DIN load from all
sources equaled approximately 428-kg-DIN/day. Of this,
the model estimated that about 285 (67%) was from OSDS
units, about 104 (24%) from pigs, 34 (8%) from natural
sources, and only 5 (1%) kg-DIN/day from agriculture.
While uncertainties on modeled loading rates could not be
directly propagated through the optimization routine, these
include uncertainty in the observed loading rates used as
calibration data (shown in Table 1), as well as uncertainty
derived from optimization of each of the model parameters.
The average percent error on the observed total DIN loads
in the 13 watersheds used for calibration was 55%, and the
average percent error of the regression between observed
and modeled DIN loads, shown graphically in Fig. 5, was
74%. Although the total uncertainty of the model result
cannot be assessed through a standard error propagation
formula, these values indicate the general order of the
magnitude of uncertainty to be considered when interpreting
the model results. The effects of the model parameters on
the overall results were also examined though sensitivity
testing.

Exploration of Correlation Relationships

Although the model could only be calibrated using the 13
watersheds for which measurements of both surface and
groundwater were collected, we also produced two-variable

Fig. 5 Scatterplot of the final calibrated observed vs. modeled total
DIN loads, with error bars representing propagated error on observed
loads. Although the nonlinearity of model optimization precluded
standard error propagation through the model, the mean average error
(MAE) associated with model calibration was 1.09-kg-DIN/d. The
gray line is the 1:1 line and represents a fixed model slope of 1
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linear regressions to explore how variability in modeled
loading from individual DIN sources related to variability
in observed loads for individual hydrologic pathways.
Figure 9 provides a scatterplot matrix showing least-squares
regressions between observed DIN and modeled DIN loads.
Observed loads can be separated by the hydrologic path-
way, each of which were plotted in a dedicated column of
the scatterplot matrix. While modeled loads cannot be
separated by pathway, they can be separated by different
sources, each of which were plotted in a dedicated row of
the matrix. Additive total observed and modeled loads for
each DIN source and each hydrologic pathway were plotted

on the rightmost column and the bottom row, respectively.
Compared across rows, the slopes of regression relation-
ships indicate the relative importance of each source to the
total DIN load in each pathway. Regressions with higher
slopes suggest that more of the DIN in the given pathway
originates from the cross-plotted source. Similarly, when
plots are compared across columns, those with higher r2

coefficients suggest that the given nutrient source controls
more of the variability in pathway-specific nutrient loads,
which helps to indicate which sources are more impactful.

Specific conclusions that can be drawn from these
relationships are (1) high slopes and r2 values in plots

Fig. 6 Relative model-calculated DIN-loading rates for each watershed scaled by subwatershed area, in kg-DIN/day per km2 of land, and numbers
within watersheds show each of the DIN loads in kg/day/km2

Fig. 7 Relative model-calculated DIN-loading rates for each watershed, scaled by the length of the watershed shoreline in kg-DIN/day per km of
coastline. Numbers within watersheds show each of the DIN loads in kg/day/km

Environmental Management (2020) 66:498–515 507



with OSDS loading on the y-axis suggest that OSDS is a
primary control on baseflow and SGD DIN loads, (2) low
slopes in agricultural source plots suggest that this is the
least important anthropogenic source, (3) large DIN loads
in SGD suggest that groundwater is an important nutrient-
delivery pathway that deserves additional management
attention, (4) lower r2 in regressions, including surface
runoff, suggests that runoff-stage nutrient fluxes are not as
well predicted by the model as baseflow-stage fluxes,
which is reasonable because of typically larger variability
in surface runoff nutrient concentrations, and (5) high r2

(0.74) for the total modeled vs. total observed loading
plot indicates that the model calibration performed
satisfactorily.

Watershed Prioritization-Ranking Results

We developed the watershed prioritization-ranking scheme
to synthesize model results and make them as relevant to
coastal and land use managers as possible. The scheme
incorporates both the area-scaled loads (Fig. 6) and the
coastline-length-scaled loads (Fig. 7) and weighs them
equally in the output. The results of the prioritization-
ranking system are shown in Fig. 10, and indicated that
Tutuila’s most heavily DIN-impacted areas are on the
Tafuna–Leone Plain, in the Pago Pago Harbor area, and on
the eastern side of the island where various villages,
including Aoa, Fagaitua, and Tula, show a higher degree of
DIN impact than the surrounding watersheds.

Discussion and Conclusions

The cumulative impacts of sediments, nutrients, acidifica-
tion, and toxic compounds, all conspire to drive coastal
ecosystem health. However, direct assessment of many of
these factors is difficult at best. Because of their low cost
and relative simplicity to measure, nutrient concentrations
and loads are commonly examined to serve as indicators of
human impact. In particular, DIN loading has been found to
be one of the most robust metrics for understanding coastal
ecosystem impacts, and thus remains a major consideration
for coastal resource management (Caraco and Cole 1999;
Waterhouse et al. 2017; Comeros-Raynal et al. 2019).

Identification of Tutuila DIN Hotspots

Prior to this study, the only watershed-scale impact classi-
fication available to local management agencies was
developed with a basic assessment of population density
within each “major” watershed (Fig. 11) (DiDonato 2004).
In contrast, our DIN-loading approach not only incorporates
more direct metrics, but also provides a prioritization
scheme at a higher “minor” watershed resolution. While
population density is a good first-order indicator of human
impacts, it is by nature an indirect indicator. By incorpor-
ating impacts from all known DIN sources, including
livestock and agriculture, and scaling these impacts by their
relative DIN loads, we provide a more direct assessment
of how human populations physically affect coastal

Fig. 8 Comparisons between modeled DIN-loading rates as separated
by each nutrient source. The upper-left panel shows the total modeled
DIN loads from all sources, and the other three panels (clockwise from

upper right) show the absolute magnitude of DIN loaded to each
watershed from OSDS units, pigs, and agriculture, respectively
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Fig. 9 Scatterplot matrices of all observed and modeled DIN-loading rates. All values are in kg-DIN/day. Abbreviation key: Obs. observed loading
rates, Comp. computed loading rates, OSDS on-site disposal systems, AG agriculture, NAT natural, BF baseflow, RO surface runoff
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ecosystems. Nonetheless, the results from this study align
with the DiDonato classifications fairly well, especially in
areas such as the Tafuna–Leone Plain and Pago Harbor,
which have been previously reported to be some of the
highest human-impact hotspots on Tutuila (Whitall and
Holst 2015; Polidoro et al. 2017; Shuler et al. 2017, 2019).
The greater proportion of flat, developable land on the plain
likely leads to higher population densities that drive the
high DIN-loading rates from these watersheds even after
scaling by watershed area or coastline length. Both this and
the 2004 assessments also agree in the island’s unpopulated
north-draining watersheds, simply because these areas are
fairly pristine and generally uninhabited. However, in
Eastern Tutuila and on the Southwestern coast, the com-
parison is more nuanced. The 2004 population-density

results were produced at a lower resolution and classified
these areas mostly under an “intermediate” level of impact.
Our model produced higher- resolution estimates and pre-
dicted particular villages in Eastern Tutuila, such as Tula,
Aoa, Amouli, and Alao Villages, and the Seetaga area of
Western Tutuila to be DIN-loading hotspots as well. These
villages may be subject to DIN-loading impacts that are
higher than expected in comparison with adjacent water-
sheds, highlighting the need for additional land use or
nutrient source management attention in particular villages.
This also exemplifies how summarization of multiple
datasets into a single prioritization-ranking score can help
managers to quickly and easily identify hotspots while
integrating a large and diverse array of information into
their decision-making.

Fig. 10 Relative impact prioritization through equal-weight ranking of
absolute, area-scaled, and coastline-length-scaled DIN fluxes from
each watershed to the nearshore. Both colors and numeric labels in
watersheds indicate the DIN-impact prioritization ranking in each

watershed with 1 being the most impacted and 93 the least. Note that if
two watersheds had the same final score, they were assigned the same
rank number; thus, some numbers are repeated

Fig. 11 Previously developed
watershed-impact classification
scheme. Data obtained from the
American Samoa EPA, and
originally sourced from
DiDonato (2004)
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Implications for Water-Quality Monitoring

Groundwater-quality monitoring and its inclusion in envir-
onmental, and not just drinking water, regulatory standards
could improve the effectiveness of coastal resource man-
agement on Tutuila or other islands with similar hydro-
geology. Throughout the United States, comparatively little
management attention has been given to understanding the
effects of groundwater discharge on coastal zones (Carlson
et al. 2019). The American Samoa EPA has been pro-
gressive in implementing environmental water-quality
standards for coastal waters and for territorial surface
waters. However, this study and others (Whitall and Holst
2015; Shuler et al. 2019) show that groundwater (SGD) is a
significant nutrient-transport mechanism to Tutuila’s coastal
areas. Coastal spring data and SGD-loading rates compiled
in this work are a useful start for developing a coastal
groundwater-quality baseline, as this work presents some of
the first known, and the most comprehensive set of coastal
spring water-quality measurements for the territory. Base-
line water- quality information is not only helpful for
detecting acute changes in water quality, but is also
important in effectively understanding and setting standards
for managing nonpoint nutrient sources in a way that pro-
tects reef health. Nonetheless, as of this writing, it is rare for
U.S. states to define groundwater-quality standards outside
of the drinking water context (Kimsey 2005; N.J.A.C.—
New Jersey Administrative Code 2018). However, as has
been shown in European Union countries such as Denmark,
groundwater- quality monitoring and regulatory standards
are an integral part of land use management strategies that
focus on drinking water and human uses, along with pro-
tection of the environment and associated aquatic ecosys-
tems (Hinsby and Jørgensen 2009; Jørgensen and
Stockmarr 2009). American Samoa is relatively small and
has a significant motivation to protect reef health, which
could make the territory an ideal pilot location to experi-
ment with developing a coastal groundwater-monitoring
and water-quality regulatory program.

Another consideration in the design of water-quality
sampling protocols is the poorly studied, but clearly
important mechanism of coastal groundwater discharge
occurring within the boundaries of stream mouths and in
estuaries. In Fagaalu Stream, which drains to Pago Harbor,
Shuler (2019) found that surface water nutrient concentra-
tions in the nearshore portions of streams, were significantly
elevated relative to concentrations in upper-stream reaches.
This was attributed to discharging baseflow originating
from the nearshore basal-lens aquifer, which, like many
other nearshore aquifers on Tutuila, is subject to con-
tamination from cesspools and piggeries that are co-located
with human development. We considered this phenomenon
when selecting sample data for this and the precursor to this

study (Comeros-Raynal et al. 2019), and although it would
be most informative to sample streams in multiple locations,
including both stream mouths and in higher reaches, budget
limitations often preclude such efforts. Where limitations
exist, the sampling methodology of always sampling near
the stream mouth during low tide, can be recommended to
ensure that measurements remain comparable between dif-
ferent streams.

The Importance of Different Sources and Hydrologic
Pathways

One of the major benefits of developing the model in a way
that accounts for loading from individual sources and
through individual pathways, is the ability to separate
impacts from specific activities for prioritization of man-
agement actions. While we promoted the synthesis of the
results through the simplified watershed prioritization
ranking, the model output can also be expanded into indi-
vidual components to gain a more refined picture of where
nutrients originate and how they are transported. Specifi-
cally, the model shows that OSDS loading is generally two
to four times higher than DIN loading from other sources.
This has also been shown on similar islands through indi-
vidual site investigations (Bishop et al. 2017; Richardson
et al. 2017). Overall, this supports trends in water-quality
management throughout the territory, which are beginning
to focus on OSDS impacts more. During the last decade in
American Samoa, management of pig waste originating
from widespread traditional piggeries became a top priority
for water resource managers. Coordinated scientific, edu-
cational, and regulatory efforts have since significantly
reduced the number of pigs and modified pig waste man-
agement practices (AS-EPA—American Samoa Environ-
mental Protection Agency 2005, 2014). Because pigs are no
longer the management priority they once were, it has
become clear that other human activities, such as waste-
water discharge from cesspools, also require management
attention. Shuler et al. (2017) found a similar result, sug-
gesting that on the Tafuna–Leone Plain, OSDS units
account for 300% more total N loading to groundwater than
N sourced from pigs. The results of this study and Shuler
et al. (2017) both indicate that N loads from agriculture
were relatively insignificant, suggesting that OSDS units are
currently the highest-priority anthropogenic nutrient source
for coastal resource manager’s attention.

The effects of each DIN source on each hydrologic
pathway can also be considered separately. On a conceptual
level, piggeries should disproportionately affect surface
water quality, and likely have a stronger effect on surface
runoff quality, since pig waste is disposed directly on the
land surface (Menzi et al. 2010; Shuler et al. 2017). On
the other hand, the water-quality threats posed by cesspools
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and septic tanks are more underreported and unknown
because OSDS effluent does not directly affect surface
water quality. Instead, it impacts the groundwater, which
then discharges to streams or to the ocean as SGD. None-
theless, linear regressions between loading from different
sources and loading in different hydrologic pathways in
Fig. 9 suggest that all of Tutuila’s anthropogenic DIN
sources may control a portion of the variability in all
hydrologic pathways. However, this result is confounded by
significant collinearity between the three anthropogenic
nutrient sources. Thus, we are not currently able to discount
any of the sampled hydrologic pathways from being
important coastal DIN transport mechanisms.

Assumptions and Limitations of the DIN-Loading
Model

It is well established that surface water nutrient concentrations
and thus DIN loads are highly temporally variable and subject
to effects that complicate the relationship between flow and
concentration such as hysteresis (Pellerin et al. 2014) or bias
in regression equations (Medalie et al. 2012; Hirsch 2014).
However, the high costs, time, and effort required to sample
at an appropriate resolution for characterizing this variability
are often prohibitive. Therefore, in this study, we had to
statistically characterize the natural variability of stream flows
and DIN concentrations by averaging often low numbers of
samples, creating wide uncertainty bounds in our results. In
addition, streams have discrete outlets, and SGD is often
channelized into individual springs. However, the watershed-
scale resolution of the model is also unable to account for the
spatial variability of discharge within each watershed. It
should be kept in mind that although this work is useful for
assessing the relative differences between watersheds, and for
showing “hotspots” where additional management actions
may be warranted, there are nonetheless high uncertainties on
absolute modeled DIN loads, likely on the order of 55–74%.
The relatively low number of surface runoff samples com-
pared with baseflow-stage samples collected for this work is
another limitation. This likely reduces the accuracy of the
model’s representation of runoff-stage DIN fluxes. Unfortu-
nately, runoff-stage data are more difficult to collect than
baseflow-stage data because runoff conditions occur less
frequently than baseflow conditions, and also because field-
work conditions are usually less pleasant during runoff con-
ditions, thereby adding human bias to sampling schedules. In
addition, nutrient concentrations in runoff are subject to
hysteretic patterns where peak nutrient concentrations may
lag behind or precede the runoff peak (depending on nutrient
species), making stream-stage-concentration relationships
significantly more complicated (e.g., Evans and Davies 1998;
Kumar 2011). These issues might be alleviated through
additional collection of runoff-stage data.

Other specific assumptions and limitations of the loading
model included: (1) our partitioning of baseflow and SGD in
gauged watersheds relied on the assumption that all net infil-
tration was either extracted by wells or lost as baseflow or
SGD, and neglected any potential for flow between water-
sheds. (2) For separation of baseflow samples and surface
runoff samples, we relied on a stage-based indicator of
streamflow. While this was the best available information,
stage is clearly not equivalent to discharge. For future work,
collecting direct measurements of discharge would be far more
reliable for this task. (3) Extrapolation of SGD/GW-R ratios
from gauged to ungauged watersheds relied on the assumption
that these ratios were similar for all watersheds. Again, col-
lection of additional discharge measurements would allow for
a more spatially distributed assessment of this parameter. (4)
We assumed the three modeled anthropogenic DIN sources:
OSDS, pigs, and agriculture are the island’s only significant
anthropogenic sources of N. It was assumed that all other
natural sources release DIN evenly throughout the landscape.
(5) While DIN source locations were reasonably well known,
loading rates, and actual fractions of released DIN escaping
attenuation processes, such as sorption, volatilization, deni-
trification, and uptake, were represented by a single lumped
parameter for each DIN release rate. Though this method
appeared empirically robust, it should be remembered that the
processes represented by this simplified approach are complex,
nonlinear, interdependent, and spatially distributed.

Despite the model’s limitations, the loading model
achieved a reasonable linear-regression fit to available data,
with an r2 of 0.74 and a standard error of 1.09-kg-DIN/day
when compared with modeled DIN loads. While each
loading rate interpretation is subject to different biases,
integrating them all into a single prioritization-ranking
scheme helped to smooth out these biases and also provided
land use managers with a single easy-to-understand metric
to identify DIN-loading “hotspots” (Fig. 10).

Data Availability

Recent advancements in cloud-computing technologies,
particularly in open-source sharing of online projects,
significantly increase methodological transparency and
reproducibility of models. We provided dynamic open-
source access to this project for managers, researchers,
regulators, and others by developing the project with
GitHub, which manages versioning and retains all
necessary raw data files, model code, descriptive
information, and output files in a public repository (Shuler
and Comeros-Raynal 2019). We also archived the most
recent version of the model for long-term storage in an
open-access digital artifact repository (https://doi.org/10.
5281/zenodo.3462869). Note that sensitive information or
datasets not intended to be publicly available, are not posted
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in raw forms. The model code is licensed under the GNU
General Public License v3.0, which is an open-access
license designed to explicitly affirm any user’s unlimited
permission to run, copy, and use the unmodified code from
this repository. By designing the model as an interactive
live-code document (Jupyter Notebook), it can be modified
to potentially address new management questions that come
up as we continue to work closely with stakeholders and
managers toward the betterment of American Samoa’s
terrestrial and marine environments. Most importantly, we
hope that applying this open-source paradigm will provide a
blueprint for others to improve upon and translate this
method to other locations throughout Oceania.
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