
REPORT

Applying a ridge-to-reef framework to support watershed, water
quality, and community-based fisheries management in American
Samoa

Mia T. Comeros-Raynal1 • Alice Lawrence2 • Mareike Sudek3 • Motusaga Vaeoso2 •

Kim McGuire2 • Josephine Regis4 • Peter Houk5

Received: 1 October 2018 / Accepted: 16 April 2019

� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract Water quality and fisheries exploitation are

localized, chronic stressors that impact coral reef condition

and resilience. Yet, quantifying the relative contribution of

individual stressors and evaluating the degree of human

impact to any particular reef are difficult due to the

inherent variation in biological assemblages that exists

across and within island scales. We developed a framework

to first account for island-scale variation in biological

assemblages, and then evaluate the condition of 26 reefs

adjacent to watersheds in Tutuila, American Samoa. Water

quality data collected over 1 year were first linked with

watershed characteristics such as land use and human

population. Dissolved inorganic nitrogen (DIN) concen-

trations were best predicted by total human population and

disturbed land for watersheds with over 200 humans km-2,

providing a predictive threshold for DIN enrichment

attributed to human populations. Coral reef assemblages

were next partitioned into three distinct reeftypes to

account for inherent variation in biological assemblages

and isolate upon local stressors. Regression models sug-

gested that watershed characteristics linked with DIN and

fishing access best predicted ecological condition scores,

but their influences differed. Relationships were weakest

between coral assemblages and watershed-based proxies of

DIN, and strongest between fish assemblages and distances

to boat harbors and wave energy (i.e., accessibility). While

we did not explicitly address the potential recursivity

between fish and coral assemblages, there was a weak

overall correlation between these ecological condition

scores. Instead, the more complex, recursive nature

between reef fish and habitats was discussed with respect to

bottom-up and top-down processes, and several ongoing

studies that can better help address this topic into the future

were identified. The framework used here showed the

spatial variation of stressor influence, and the specific

assemblage attributes influenced by natural and anthro-

pogenic drivers which aims to guide a local ridge-to-reef

management strategy.
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Introduction

Coral reefs are increasingly impacted by multiple stressors

that vary in temporal and spatial scales (Burke et al. 2011;

Halpern and Kappel 2012; Halpern et al. 2015; Hughes

et al. 2017), and ultimately diminish ecosystem function

and services provided to society (Hughes et al. 2007a;

Pratchett et al. 2014). The growing number of studies
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documenting links between human activities in coastal

watersheds and coral reef health (Fabricius 2005; Fabricius

et al. 2005; De’ath and Fabricius 2010; Oliver et al. 2011;

Rodgers et al. 2012; Brodie and Pearson 2016; Brown et al.

2017b) have paved the way for integrated management

efforts that incorporate ridge-to-reef conservation planning

(IUCN) 2017). Yet, understanding the relative contribution

of each primary stressor to overall ecosystem states, and

linking this knowledge with evolving management goals,

has proven difficult. Tangible links between science and

management are difficult because measuring individual

stressors is costly (Fredston-Hermann et al. 2016; Rude

et al. 2016; Brown et al. 2017b), and inherent environ-

mental differences exist in localized systems that may limit

generalities (Bellwood et al. 2004; Halpern et al. 2008;

Taylor et al. 2015; Heenan et al. 2016; Hughes et al. 2017).

As a result, management stalls because expected outcomes

of policies, regulations, or actions designed to benefit

society are difficult to predict with certainty. Improved

predictions regarding the probability of success and

effectiveness of management actions are desirable to

improve social acceptance of policy and to enable positive

feedback of science to management.

Land-based pollution from increased sedimentation and

nutrients has caused shifts in coral community structure

and composition through reduced coral biodiversity, cover,

and species richness, and transition to non-reef building

organisms. Nutrient enrichment with depressed herbivory

has been attributed to a shift from coral to algal dominance

on coral reefs (McCook 1999; Littler et al. 2006; Hughes

et al. 2007a, b; Smith et al. 2010). Elevated sediment input

damages corals by increasing turbidity, leading to reduced

light penetration and direct smothering from settled sedi-

ments (Fabricius 2005; Bartley et al. 2014). Sedimentation

can also directly affect coral recruitment and cause partial

mortality with subsequent shifts in coral community

structure and colony sizes (Fabricius 2005; Bartley et al.

2014).

Declining water quality may also influence populations

and assemblages of reef fishes through direct effects on

their behavior and physiology, or indirectly through

changes in benthic habitats and species interactions. Recent

studies of the direct effects of suspended sediments have

shown that for small-bodied site-attached damselfishes

(Pomacentridae), elevated levels of suspended sediments

can damage gill tissue and/or lead to a remodeling of gill

structures (Hess et al. 2015, 2017), potentially compro-

mising their capacity to uptake oxygen from the environ-

ment. Further, elevated suspended sediment levels have

been shown to impair sensory (i.e., visual and olfactory)

functions, inhibiting their ability to locate and hence ingest

planktivorous food items (Wenger et al. 2012, 2017), and

detect and settle to suitable benthic habitats. In turn, these

impaired sensory functions are likely to lead to reduced

growth, body condition, and survival. Sedimentation can

also directly affect the feeding ecology of reef fishes by

reducing prey detection and visual acuity in foraging

planktivorous and piscivorous fishes as suspended sedi-

ments increase (Wenger et al. 2017).

The main island of Tutuila, US Territory of American

Samoa, is a high island with steep watersheds that are

thought to contribute extensive non-point sources of pol-

lution to coastal waters. Steep watersheds have led to the

majority of people living in the coastal plains and con-

tributing to vegetation loss, soil erosion, and non-point

source pollution draining into the adjacent marine waters.

In support, local studies have linked poor land use with

declining water quality and impacts to coral reefs (Biggs

and Messina 2016; Holst Rice et al. 2016; Messina and

Biggs 2016; Polidoro et al. 2017). However, pollution acts

in concert with other acute and chronic disturbances such

as fishing pressure and (natural) disturbances, and a deeper

appreciation for the magnitude, spatial distribution, and

nature of individual stressors remains lacking. Despite

multiple monitoring programs that assess watershed con-

dition, reef flat and reef slope biological assemblages in

American Samoa (Green 2002; Fenner 2013; Houk et al.

2013; Holst Rice et al. 2016; Sudek and Lawrence 2016;

Tuitele et al. 2016b), programs are just now developing

improved collaborative networks to holistically understand

ridge-to-reef systems.

We present a holistic examination of linkages between

land use, water quality, fishing pressure, and the ecological

condition of coral reef resources for 26 watershed–reef

sites around Tutuila, American Samoa. We used Dissolved

Inorganic Nitrogen (DIN), as a proxy of water quality, as

this nutrient is highly bioavailable, directly taken up by

phytoplankton and other algae, and relatively inexpensive

and simple to analyze compared to other nutrient con-

stituents (Dumont et al. 2005). We examined DIN collected

from stream mouths over 1 year to determine thresholds in

human presence and development that predicted elevated

nutrient concentrations beyond an uninhabited watershed

benchmark. We then used proxies of DIN, such as human

population density and proxies to fishing access to deter-

mine the relative influence of pollution and fishing on

adjacent reefs. This study builds on previous efforts doc-

umenting links between watershed uses and nearshore reef

condition (Houk et al. 2005; DiDonato et al. 2009; Biggs

and Messina 2016; Holst Rice et al. 2016; Messina and

Biggs 2016; Biggs et al. 2017), but expands upon the

spatial scale of investigation and the coupling of water

quality data, watershed characteristics, and fishing access

to better isolate human–stressor interactions. More broadly,

the study extends a ridge-to-reef management concept,

paving the way for prioritized management planning.
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Methods

Study location

American Samoa is the southernmost US Territory at

14.27�S, 170.13�W in the South Pacific. It is comprised of

five volcanic high islands (Tutuila, Aunu’u, Ofu, Olosega,

and Ta’u) and two atolls (Rose and Swains) with a total

land area of about 200 km2 (DiDonato et al. 2009; Nimbus

2016). Water quality and biological data were collected on

the main island of Tutuila (Fig. 1).

Ecological data

At each site, two 100-m transect tapes were laid along the

8–10 m reef slope contour that were split into six 25-m

transects (0–25 m, 30–55 m, 60–85 m, 90–115 m,

120–145 m, 150–175 m). Each site was located using GPS

coordinates from previous surveys or using ArcMap 10.4 to

delineate an approximate distance of 250 m away from

stream discharge (Fig. 1).

Fish assemblages

Stationary Point Count (SPC) surveys (Bohnsack and

Bannerot 1986) were conducted at 20-m intervals. During

each SPC survey, a trained diver recorded the name and

size (to the nearest cm) of all food fish within a 7.5 m

radius of the transect for 3 min. Food fishes included:

surgeonfishes (Family: Acanthuridae), parrotfishes (Labri-

dae), groupers (Epinephelidae), jacks (Carangidae),

emperor fishes (Lethrinidae), snappers (Lutjanidae) and

triggerfish (Balistidae). A total of 12 replicate SPC surveys

were conducted at each site starting at the 0-m mark and

Fig. 1 Map of the study island highlighting the population centers of

Tafuna plain and Pago Pago harbor area, and the two most accessible

boat launching ramps in the north and south, Fagasa and Pago Harbor,

respectively. Squares indicate locations of biological surveys with

colors defining major reeftypes (see methods). Darker shades of gray

within each watershed depict cleared forest, barren land, and urban

development. Watershed discharge follows the streams shown in blue.

Water quality sampling was conducted at the mouth of streams

associated with biological surveys (where possible)
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extending 20 m past the last transect line. Fish size esti-

mates were converted to biomass using standard fish

length-to-weight coefficients derived from regional fishery-

dependent data when available (Taylor and Choat 2014)or

from Fishbase (www.fishbase.org). These data were used to

estimate five metrics of the fish assemblages used in

analyses below: (1) fish assemblage biomass without

predators, (2) predator biomass, (3) mean fish size, (4) fish

assemblage evenness, and (5) fish assemblage hetero-

geneity as defined by multivariate distances between

replicates (Clarke and Gorley 2015).

Benthic substrates

Benthic photographs were taken every meter using a 1-m-

long monopod (26 photographs per transect; total of 156

photographs per site). These photographs were analyzed

for benthic substrate cover using the software Coral Point

Count estimate (CPCe) (Kohler and Gill 2006). Photograph

images were examined by placing ten random points on

each photograph and identifying the benthic substrate

based on several categories: coral (identified to genus),

macroalgae, turf algae, branching coralline algae, crustose

coralline algae, fleshy encrusting algae, sand, rubble, and

other invertebrates. These data were used to estimate three

metrics that were used in analyses: 1) coral cover, 2)

macroalgal cover, and 3) a benthic substrate ratio (i.e., the

ratio of calcifying corals and coralline algae to fleshy and

turf algae).

Coral assemblages

A 1 9 1 m quadrat was placed along the transect at every

20-m mark, representing a total of 10 per site. Every coral

colony whose center fell within the quadrat was identified

to lowest taxonomic level possible, and the length and

width of the colony were measured. Most corals were

identified to the genus level and assigned a growth form

(i.e., branching Acropora, encrusting Montipora). Con-

spicuous and common corals were identified to the species

level (i.e., Porites rus). Area was calculated using the

geometric diameter for each colony assuming corals were

circular. Several metrics were derived from these data and

used in the analyses below: (1) coral colony size skewness,

(2) coral evenness, (3) and assemblage heterogeneity as

defined by multivariate distances between replicates

(Clarke and Gorley 2015).

Condition scores

Biological condition scores were calculated for fish, ben-

thic, and coral assemblages using a previously established

framework by working groups across the Pacific (Houk

et al. 2015). The process combined the standardized met-

rics noted above to produce latent variables describing each

assemblage. Briefly, the metrics were selected to represent

non-redundant beneficial attributes that are often used to

assess temporal trends in reefs. The combination of the

metrics also aimed to reduce the potential bias associated

with disturbance states, by combining metrics that would

respond both positively and negatively to disturbances (i.e.,

the expected decrease in coral cover but subsequent

increase in species richness with more available habitat).

The individual metrics for coral assemblages were: (1)

assemblage heterogeneity, (2) skewness of colony-sized

distributions, and (3) Shannon–Weaver evenness. The

individual metrics for benthic assemblages were: (4) coral

cover, (5) benthic substrate ratio, (6) coral evenness, and

(7) macroalgal cover. The individual metrics for fish

assemblages were: (8) assemblage evenness, (9) assem-

blage heterogeneity, (10) fish assemblage size, (11) fish

assemblage biomass, and (12) predator biomass. Together,

these 12 metrics have previously been used to evaluate

each of the assemblages and overall ecosystem condition

(Houk et al. 2015).

Environmental data

Environmental data were collected to evaluate: (1) water

quality across the study watersheds, (2) the relation-

ship(s) between water quality and watershed characteris-

tics, and (3) the relationship(s) with biological data.

Previous studies were used as a basis to identify relevant

environmental factors that influence both water quality and

biological assemblages, including both natural and

anthropogenic factors that are described below (Houk et al.

2005, 2013, 2015).

Water quality

Dissolved Inorganic Nitrogen (nitrate, nitrite, and ammo-

nium) was collected from 26 streams on a monthly basis

from September 2016 to September 2017. DIN monitoring

stations were selected across three watershed classifications

(pristine, intermediate, and extensive) defined by the

American Samoa Environmental Protection Agency

(DiDonato 2004; Tuitele et al. 2016a). Water sampling for

all stations was conducted during the same 3-day time-

frame each month and coincided with the lowest tide of the

month at new or lunar moon periods. Therefore, monthly

samples collected during the sampling period across sites

aimed to control for extrinsic environmental factors to the

extent possible.

Water samples were collected from streams using

500-ml polyethylene bottles. Samples were filtered in the

laboratory with Millipore glass fiber prefilters 0.7-lm
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filters and then frozen until analysis. Frozen samples were

analyzed within 3 months of collection. Dissolved Inor-

ganic Nitrogen concentrations were analyzed using the

SEAL Analytical AA3 HR Nutrient Analyzer. We used the

methods and procedures outlined by SEAL Analytical for

the analysis of Nitrate and Nitrite and Ammonium (SEAL

Analytical 2011a, b).

Other environmental factors

A suite of site-based environmental factors was quantified

including natural factors and human stressors. Natural

factors included wave energy and total watershed size,

while human stressors included distances to fishing ports

and population centers, human population density, and

disturbed land in the watershed. The total amount of dis-

turbed land in each watershed, including quarry/landfill,

secondary scrub, urban built-up, and urban cultivated area

was calculated on ArcMap 10.4 using the American Samoa

Vegetation layer (Liu et al. 2011). Wave energy for each

site was calculated using 10-year average wind speeds for

Tutuila using the University of Guam Marine Lab Wave

Energy tool available for ArcGIS (Jenness and Houk

2014). Human population per watershed was calculated

from the 2010 census of American Samoa using the pop-

ulation counts for places (villages) (https://www.census.

gov/population/www/cen2010/island_area/as.html). Dis-

tances to the major boat harbors and the main population

centers via boat and road access were calculated using the

Distance Measuring tool on ArcMap 10.4 (Pago Pago and

Fagasa boat harbors, Pago Pago and Tafuna population

centers, Fig. 1).

Data analysis

We first tested for inherent difference in the biological

assemblages that were predicted by major reeftypes which

hypothesized long-term environmental selection may have

existed. This was done to determine whether stratification

in subsequent analyses with human factors was warranted.

For instance, the previous studies have found significant

difference between reefs on the north versus south coast of

Tutuila and used reeftype as a basis for stratification.

Multivariate principal components ordinations and tests of

comparison were conducted for fish, benthic, and coral

assemblages (Anderson et al. 2008b) to test for reeftype

differences in the north and southern reefs around Tutuila

(Figure S1). In addition, this study hypothesized that a third

major reeftype may exist, where significant protection from

wave energy existed (i.e., a hypothesis based upon wave

energy calculations noted above combined with field

observation). It was thought that protection from wave

energy may enhance the retention of watershed influences/

run-off and drive the development coral assemblages and

reefs through time. Biological data were log transformed

and used to create Bray–Curtis similarity matrices. Bray–

Curtis matrices described the ecological similarity between

each pair of sites based upon summed differences in pair-

wise species abundances (Anderson et al. 2008a). Before

examining comparisons between differing reeftypes, tests

for homogeneity of variances of the similarity matrix were

performed using PERMDISP. Given homogeneous vari-

ance structures between the two groups, PERMANOVA

tests were used to assess seasonal and spatial differences.

Finally, a principal coordinate ordination (PCO) was per-

formed on the similarity matrices to depict the PERMA-

NOVA results in a two-dimensional space. This process

confirmed earlier studies and suggested to examine both

island-scale investigations and stratified investigations

based on major reeftype.

We next analyzed water quality data with respect to

watershed characteristics. A forward, stepwise regression

modeling process was used to describe the relationship

between mean annual concentrations of DIN and watershed

characteristics. We first examined all terms individually to

determine which factors best predicted DIN. Forward steps

consisted of incorporating addition variables in an additive

or interactive manner when improved fits were found. This

process continued until all interaction terms were exam-

ined, and best fits were found. All models included a nested

term for reeftypes to highlight where significant relation-

ships were most pronounced. All significant models were

reported with respect to their fit (R2 and P values), as well

as their likelihood scores (AIC scores). The environmental

factors used to examine DIN concentrations were water-

shed size, total human population, human population per

area, disturbed land, and disturbed land per area

(Figure S1).

A similar process was undertaken to examine factors

hypothesized to predict the condition of fish, coral, and

benthic assemblages, with ‘‘condition’’ defined by stan-

dardized means of the biological metrics noted above. A

similar stepwise process was used, but a larger suite of

environmental factors was examined with respect to bio-

logical assemblages. Because the larger suite of environ-

mental factors was specific to differing reeftypes, these

models did not include a nested term and were run inde-

pendent for each reeftype. Natural factors included wave

energy and total watershed size. Anthropogenic factors

related to water quality included human population and

human population per area. Anthropogenic factors related

to fishing pressure included both boat and driving distances

from main ports and population centers. All significant

models were presented based upon the model selection

criteria noted above (Figure S1).
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Finally, sensitivity analyses were performed to evaluate

the relative influence of each individual biological metric

with its respective condition score. Pearson’s moment

correlations were calculated between each biological met-

ric and the corresponding latent variable (i.e., mean of

standardized metrics) to better interpret the individual

influence of each metric.

Results

Reeftypes

There were clear distinctions between benthic, coral, and

fish assemblages with respect to differing reeftypes found

on the north coast, south coast, and reefs sheltered from

waves (pseudo-F statistics[ 4 for all multivariate

ANOVA comparisons, P\ 0.01; post hoc pairwise

t statistics[ 2 for all individual reeftype comparisons

except fish assemblages in wave-sheltered reefs, P\ 0.01;

Fig. 2). For benthic and coral assemblages, the main taxa

accounting for these differences were Diploastrea, turf

algae, and Porites rus on wave-sheltered reefs; soft corals,

Isopora, table Acropora, Goniastrea, and arborescent

Acropora on southern reefs, and bluegreen algae, Cosci-

naraea, Pavona, Leptastrea, Montipora, Pocillopora, and

branching Acropora on northern reefs.

Both benthic and coral assemblages were partitioned by

natural environmental settings that differed across the three

reeftypes (north, south, and wave sheltered). However,

food fish assemblages showed strong separation for

northern and southern reefs only, with wave-sheltered reefs

nested within these two reeftypes (Fig. 2). Given the col-

lective findings, regression models using biological

dependent variables were examined within each of the

major reeftypes. Prior to examining potential relationships

between human factors and reef assemblages, we next

examined which watershed characteristics best predicted

DIN values.

Water quality and watershed characteristics

Generally, island-wide Dissolved Inorganic Nitrogen

(DIN) concentrations showed consistent and expected

seasonal variations, with peak DIN concentrations during

the cool winter months (July–September), secondary peaks

with high rainfall (January–April), and lowest values dur-

ing warm months with relatively low rainfall (Tables S1

and S2). However, at the site level, annual mean DIN

concentrations were highly variable across the 26 water-

sheds. Aua, a village near the urban center of Pago Pago

with a high human population density of 763 persons per

km2, had the highest average concentrations of DIN (site #

25, Fig. 3). Other notable villages with consistently high

DIN concentrations were at site #23, a less populated

watershed with relatively low water flux in the streams, and

at site #17, another highly populated village associated

Fig. 2 Principle component ordination plots of benthic (a), coral (b),
and fish (c) assemblages. Circles represent significant differences in

biological assemblages that existed within each reeftype. Vectors

indicate taxa that were the strongest contributors to reeftype

differences, with vector length proportional to correlation strength

with the primary PCO axes
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with the largest watershed. The lowest mean DIN con-

centration was found, where few humans and developed

land exist at site #19 (Fig. 3).

Regression models revealed that human populations in

the watersheds, both total number of humans and humans

per km2, best predicted DIN in stream mouths. However, a

significant interaction model provided the best fit which

included percent disturbed land and human population

(Table 1). Disturbed land and disturbed land per km2

provided weaker, but significant, fits. For all of the sig-

nificant models, wave-sheltered reefs consistently had the

strongest relationship (Table 1, see reeftype significance).

Reefs on the south shore where human populations are

highest also provided significantly better fits compared to

the north for three of the five significant models. Mean-

while, in northern reefs, there was never any significant fit

between watershed characteristics and DIN. In sum, human

populations alone best predicted DIN concentrations,

especially in wave-protected reefs with higher retention

and along the south coast, where humans and watershed

development were highest. Reefs on the northern coast

had\ 200 humans per km2, representing a potentially

useful benchmark for predicting when enhanced DIN

concentrations may be expected from human presence.

(a)

(b)

Fig. 3 Annual mean dissolved

inorganic nitrogen (DIN)

concentrations scaled by symbol

sizes on the study area map (a).
The distribution of monthly

DIN concentrations over the

course of the study year (b),
with black lines showing

median values, boxes showing

25th and 75th percentile, and

line showing 5th and 95th

percentile of the data. For both

plots, colors indicate differing

reeftypes (methods)
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Lastly, watershed size alone did not predict any significant

amount of the variation in nutrient concentrations.

Biological condition scores

Biological condition scores for fish, benthic, and coral

assemblages depicted clear gradients in condition within

each of the reeftypes (Fig. 4, Table S2). Interestingly, there

were weak correlations between the latent variables

describing fish, benthic, and coral assemblages in most

instances (r\ 0.3, for comparisons within all and indi-

vidual reeftypes). The condition scores were well predicted

by the suite of natural and human factors, but relationships

differed for each metric and within each reeftype.

Fish condition scores across southern reefs were pre-

dicted by the interaction between wave energy and distance

to Pago Pago harbor, two metrics that together define how

accessible a reef is to fishing. Sensitivity analyses furthered

supported these trends and highlighted that biomass and

size metrics were the strongest drivers of overall scores,

with secondary and more unique contributions from fish

diversity and evenness metrics (Fig. 5). Fish condition

scores for the northern reefs were best predicted by the

interaction between distance to Pago Pago harbor (i.e., the

main port on the south) and distance to Fagasa on the north

shore (i.e., the main port on the north). Fish condition

scores in wave-sheltered reefs were also primarily influ-

enced by distance to Pago Pago harbor, but uniquely, total

human population in the adjacent watershed was a sec-

ondary predictor, highlighting a greater connection with

nearby human populations (Table 2). The findings for

wave-protected reefs are recursive in nature because

human populations in the adjacent watershed may indicate

a non-boat-based localized fishing index, but was also

highly correlated with DIN (see discussion).

Benthic condition scores in the south reefs were best

predicted by the interaction between distance to Pago Pago

harbor, or fishing access, and population per area which

was not significantly correlated with DIN concentrations in

this reeftype. Sensitivity analyses supported that benthic

scores were most influenced by the ratio of calcifying

substrates and coral cover, essentially representing reef

calcification potential (Fig. 5). Benthic assemblages for

northern reefs were best predicted by the interaction

between wave energy and distance to the main boat ramp,

both highlighting the influence of fishing access, but the

former indicating both flushing potential and access. Sim-

ilarly, the interaction between distance to the main boat

harbor and population per area best determined the benthic

condition scores for wave-sheltered reefs, representing

metrics that described both fishing access and proxy to DIN

contribution (i.e., recursive findings again for this reef-

type). However, this model was non-significant due to

smaller sample sizes (i.e., n = 6 wave-sheltered reefs sur-

veyed) (Table 2).

Coral condition scores were driven mostly by diversity

metrics such as evenness and heterogeneity, with size-

based criteria having a highly variable influence that was

most pronounced in wave-sheltered reefs, where anoma-

lously large Porites rus colonies existed. No significant

relationships were found for southern reefs. Meanwhile,

natural factors were more influential to coral assemblages

across northern reefs, as watershed area and wave energy

were primary explanatory variables, and distance to Fagasa

boat ramp providing a secondary factor in the best-fit

model. Lastly, coral condition scores were best predicted

by human population per km2 across wave-sheltered reefs

(Table 2).

Discussion

Integrated ridge-to-reef approaches that assess the indi-

vidual roles of multiple stressors on local reef assemblages

represent desirable science-to-management frameworks

(Oliver et al. 2011; Rodgers et al. 2012; Alvarez-Romero

et al. 2014). The relative condition of the landscape often

serves as a viable indicator of the health of adjacent coral

reef systems (Oliver et al. 2011; Rodgers et al. 2012;

Fredston-Hermann et al. 2016; Rude et al. 2016; Brown

et al. 2017b), yet a suite of environmental and biological

metrics have now been developed without any clear

Table 1 Regression statistics

supporting the relationship

between watershed

characteristics and dissolved

inorganic nitrogen across the

study watersheds

Model Model variables Reeftype significance R2 AIC

1 % Disturbed:population/reeftype Wave protected***, south*** 0.70*** - 115.9

2 Population/reeftype Wave protected***, south** 0.62*** - 110.5

3 pop.area/reeftype Wave protected*** 0.50*** - 103.8

4 % Disturbed/reeftype Wave protected* 0.22* - 92.9

5 Area disturbed/reeftype Wave protected*, south* 0.19* - 91.9

Models are listed in order of decreasing R2 values and increasing AIC scores that represented their global

fit. Each model was also examined for significant differences among reeftypes. Only significant reeftypes

for each model are shown. P values\ 0.05*,\ 0.01**, and\ 0.001***

Coral Reefs

123



consensus regarding their hierarchical nature (Oliver et al.

2011; Rodgers et al. 2012; Alvarez-Romero et al. 2015;

Brodie and Pearson 2016; Waterhouse et al. 2016; Biggs

et al. 2017; Hamilton et al. 2017; Teichberg et al. 2018).

We add to this line of research by first quantifying linkages

between watershed characteristics and water quality, and

then identifying individual and synergistic stressor regimes

that predicted key attributes of reef assemblages. While our

findings regarding the strength of individual stressors may

not be universal to differing locales besides American

Samoa, the process leading to our hierarchical framework

for localized stressors is transferrable. Here, the watershed-

based approach aligns with both traditional and modern

resource management frameworks; so the present effort

Fig. 4 Relative biological

condition scores for fish (a),
benthic (b), and coral

(c) assemblages depicted by

circle sizes (methods).

Biological condition scores

were best predicted by

environmental factors shown on

the map: wave energy, road

driving distance, boat access,

human population size, human

population per area, and

watershed size (see Table 1).

Wave energy pixels around the

island are scaled relatively from

high (dark) to low (light)
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helps to allow co-management between communities, local

agencies, and federal agencies (Cornish and DiDonato

2004; DiDonato 2004; Houk et al. 2005; DiDonato et al.

2009; Houk et al. 2013; Tuitele et al. 2015; Holst Rice et al.

2016; Messina and Biggs 2016; Tuitele et al. 2016c; Biggs

et al. 2017). The results can align management priorities

with predicted and desirable ecological outcomes.

Water quality

Human populations and the associated development and

changes in land use in watersheds are reliable predictors of

nitrate and DIN loading concentrations and export to

inshore coastal areas (Peierls et al. 1991; Caraco and Cole

1999; Caraco et al. 2001; Dumont et al. 2005; Brodie et al.

2012; Waterhouse et al. 2017). Overall, nutrient concen-

trations were well predicted by human population as

expected by the local water quality standards (Figure S2).

However, best-fit models revealed that developed land

intensity was a key covariate that could be incorporated

into a revised watershed classification system. Minimally

impacted watersheds could be classified by human popu-

lations less than 200 individuals, below which no rela-

tionships were found with DIN. Once disturbed land

exceeded 1.49 km2 in the southern and wave-protected

reefs, it represented a key covariate. While these thresholds

represent hypotheses that can be further tested and refined,

the sequential influence of human population density and

developed land is a concept that is transferrable. For

instance, land clearing and urban development lead to

increased sedimentation, while agriculture and high human

density significantly contribute to nutrient and pesticide

loading to nearshore coastal areas (Brodie and Mitchell

2005; Wooldridge et al. 2006; Burke et al. 2011).

There was a weak overall correlation between human

population density and disturbed land in all reeftypes,

suggesting that watershed development may become

decoupled with human population under growing devel-

opment. Tutuila has already undergone a 5.8% increase in

developed area and a net increase of 6.6% of impervious

surface area between 2004 and 2010; meanwhile, the

human population has remained the same (https://coast.

noaa.gov/ccapatlas/). We last highlight a universal trend

across all reeftypes, whereby watershed sizes alone did not

significantly influence DIN concentrations. For instance,

one of the largest watersheds had among the lowest DIN

(site # 8, Fig. 1). The present results therefore provided a

novel decoupling between watershed size, development,

human population, and the resultant nutrient loading.

Coral reef assemblages

Watershed characteristics linked with DIN and fishing

access were the best predictors of ecological condition

scores, but their influences differed. The strongest factors

describing fish condition scores were distances to boat

harbors and wave energy. While both clearly relate to

fishing access, the latter also represents a natural environ-

mental regime that enhances flushing, and was expected to

have a negative relationship with fish biomass (Friedlander

et al. 2003). Wave energy, however, has also been shown

to have a positive effect on total fish and herbivorous fish

biomass at a regional scale in Hawaii (Gorospe et al. 2018)

and in three jurisdictions in Micronesia (Palau, Guam, and

Pohnpei) (Mumby et al. 2013). This relationship can vary

across spatial scales with stronger impacts found at local

scales (Friedlander et al. 2003; Rodgers et al. 2010) than at

island scales (Williams et al. 2015). Beyond correlations

between wave energy and fish assemblage distribution and

composition, wave energy can also directly influence

functional morphology of reef fishes (Fulton and Bellwood

2004; Fulton et al. 2005) with effects on feeding, tropho-

dynamics, and ecosystem functioning (Bejarano et al.

2017). Wave exposure in shallow coastal areas also

impacts reef fish indirectly through increased productivity

of algal assemblages (Roff et al. 2015, 2018) which in turn

can have positive effects on growth and feeding rates of

herbivorous reef fishes (Hart and Russ 1996; Wenger et al.

2016). This positive feedback may extend to increases in

densities following coral cover decline in some functional

groups (e.g., parrotfishes) (Adam et al. 2011; Russ et al.

Fig. 5 Sensitivity analysis associated with biological condition

scores. Symbols represent the correlation between each component

of fish (dark circles), benthic (squares), and coral (X) assemblages and

the overall score. Error bars represent standard deviations associated

with the three different reeftypes
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2015), potentially corresponding to increases in suit-

able feeding habitats.

The significant relationship between distance to harbors

and waves to fish condition score on Tutuila is supported

by other studies in Micronesia. A recent study examining

the distribution of similar fish condition scores across

Kosrae, Micronesia, found a clear pattern of larger, more

abundant fishes in higher trophic levels on the leeward side

of the island back in the mid-1980s (McLean et al. 2016).

However, this pattern was reversed in the 2010s when reefs

with high wave energy had larger and more abundant fish

populations. Further, distances to boat access and wave

energy combined to describe a significant temporal gradi-

ent at the island scale. These findings were echoed in a

separate study across many islands in Micronesia con-

ducted in the 2010s, where both low fishing access and

high wave energy were positive predictors of both fish and

benthic assemblages (Houk et al. 2015). In sum, the natural

abundances and roles fish play in the ecosystem likely shift

with wave energy as previously hypothesized but also with

human factors. However, there are likely to be differential

responses to wave energy and fishing access across distinct

fish functional groups (Mumby et al. 2013) with potential

flow-on impacts to overall ecosystem functioning.

The present study found that distances to boat harbors

and wave energy were also primary predictors of the

benthic assemblages. However, population per km2 was a

secondary covariate that may indicate localized fishing

Table 2 Results from the forward, stepwise regression modeling process that examined factors driving the condition of fish, benthic, and coral

assemblages

Dependent

variable

Habitat Model Slope(s) (SE) Intercept

(SE)

R2 P value AIC

Fish assemblage score

South (n = 11) wave ? dist.to.Pago ? - 2.9 (0.67); - 2.7 (0.63); 2.3

(0.46)

3.3 (1.2) 0.7 0.009 19

wave x dist.to.Pago

South (n = 11) wave ? road.to.Tafuna ? - 0.74 (0.42); - 1.17 (0.47);

0.72 (0.23)

1.1 (0.95) 0.59 0.03 22.7

wave x road.to.Tafuna

North (n = 6) dist.to.Pago x dist.to.Fagasa - 0.17 (0.06) 0.79 (0.20) 0.52 0.04 - 0.9

North (n = 8) wave x road.to.Tafuna x

road.to.Pago

- 0.04 (0.01) 0.39 (0.19) 0.47 0.02 13.1

North (n = 8) wave - 0.39 (0.15) 0.78 (0.34) 0.4 0.04 14.3

Wave protected

(n = 6)

pop ? dist.to.Pago - 0.54 (0.11); - 0.26 (0.11) 1.6 (0.40) 0.82 0.04 1.3

Wave protected

(n = 6)

pop - 0.38 (0.13) 0.76 (0.28) 0.6 0.04 5.69

Benthic assemblage score

South (n = 11) dist.to.Pago x pop.area 0.14 (0.05) - 0.55

(0.21)

0.44 0.02 11.7

North (n = 8) wave x dist.to.Fagasa 0.16 (0.06) - 0.60

(0.26)

0.45 0.03 14.5

Wave protected

(n = 6)

dist.to.Pago x pop.area 0.47 (0.24) - 1.52

(0.79)

0.37 0.12 11.4

Coral assemblage score

Wave protected

(n = 6)

pop.area - 0.57 (0.20) 1.14 (0.44) 0.58 0.04 11.1

North (n = 8) shed.area x wave x

dist.to.Fagasa

- 0.06 (0.02) 0.44 (0.19) 0.45 0.03 9

North (n = 8) shed.area x wave - 0.08 (0.03) 0.35 (0.17) 0.45 0.03 9.1

South (n = 10) –none– – – – – –

All models with significant fits are listed top-to-bottom in accordance with the lowest AIC values, when appropriate, and then by reeftype. AIC

values aid in model selection and can be used to evaluate statistical models for a given set of data (i.e., only compare AIC values for models

investigating the same habitat type that have the same sample size within a dependent variable). Sample sizes differ if potential outliers were

detected in the modeling process and their removal investigated. Predictor variables: wave (wave energy), dist (boat distance), road (driving

distance), pop (populations), pop.area (population per area), and shed.area (total watershed size), only the most parsimonious models with the

lowest AIC are presented here
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pressure and/or pollution loading. We note a recursive

nature of these predictive regimes in some instances

because proxies were not always direct and clear measures

of pollution loading or fishing. Wave energy is a major

contributor to species zonation and benthic assemblage

composition (Grigg 1983; Rodgers et al. 2012; Williams

et al. 2013; Roff et al. 2015). While proxies to fishing may

influence benthic assemblages through top-down processes

(i.e., changes in fish assemblages affecting quantity and

quality of benthic habitats), changes in coral reef habitats

across a gradient of water quality (i.e., bottom-up pro-

cesses) can also affect composition and biomass of reef

fishes. This recursive relationship between reef fishes and

their habitat is particularly relevant to species that have

strong associations with live coral and structurally complex

habitats (Graham and Nash 2013). Changes in coral reef

habitats can have profound impacts on the recruitment

(DeMartini et al. 2013; Hamilton et al. 2017; Goodell et al.

2018), abundance (Pratchett et al. 2011; Chong-Seng et al.

2012; Coker et al. 2014; Pratchett et al. 2014), composi-

tion, feeding (Adam et al. 2011), and hence function

(Pratchett et al. 2011; Richardson et al. 2017) of reef fish

assemblages. Responses to coral loss can vary among

species, functional groups, and by region (Pratchett et al.

2011). Yet, despite the different responses to coral loss

within and among functional groups of reef fishes, exten-

sive declines in coral cover will eventually lead to reduc-

tions in species biodiversity and abundance with important

implications for ecosystem functioning (Pratchett et al.

2011).

The magnitude of changes in coral community compo-

sition caused by declining water quality may likely shift

species–habitat associations, with distinct species assem-

blages associated with particular habitats across a spectrum

of water quality (Brown et al. 2017a). The individual

effects of increased sediments and nutrients have caused

shifts in coral trophic structure and composition through

reduced coral biodiversity, cover, and species richness, and

transition to non-reef building organisms. For example,

sedimentation causes changes in coral population struc-

tures such as declines in mean colony sizes, altered growth

forms, and reduced coral growth and survival (Fabricius

2005). Enrichment of nutrients on the other hand can shift

coral reef communities from dominance of autotrophic

nutrient recycling symbiotic corals to macroalgae and

further to heterotrophic filter feeders (Fabricius et al.

2005, 2012, 2014, 2016). While the impacts of finer-

grained sediments were not included in the model, the

significant correlations between human population, land

use, and DIN loading can be used to infer other terrestrial

inputs from the watersheds (e.g., sediments, contaminants)

into nearshore reef habitats on Tutuila. The present model

can be updated to include additional water quality

parameters as they become available. For instance, an

ongoing study is modeling sedimentation across a range of

watersheds on Tutuila which can help further understand-

ing of the interaction between the two stressors and the

transport mechanisms to nearshore reef areas.

Coral assemblages had weaker relationships with envi-

ronmental factors. Coral assemblages were best predicted

by wave energy, watershed size, and distance to boat

access in the north, and only predicted by population per

km2 in wave-protected reefs. The significant relationship

between proxies to DIN and coral assemblages in wave-

sheltered reefs underscores the vulnerability of nearshore

coral habitats in semi-enclosed bays, lagoons, or poorly

flushed regions to acute and chronic increases in nutrients

(Fabricius 2005). Previous studies have also found strong

ties between water quality and coral species richness or

evenness (Cooper et al. 2009; Houk and Van Woesik

2010). We last point out that the coral assemblage score

could have been influenced by the recent Crown-of-Thorn

Starfish outbreaks that ended approximately 2 years prior

to this study. However, COTS were observed to be dis-

tributed across the entire island, and the condition score

used metrics that were least sensitive to disturbances when

combined. Further, COTS were only culled within one

location on the north shore. Interestingly, the relative

condition reported here for coral assemblages resonated

with the distribution of reef condition reported in 2013,

when a subset of sites were examined (Houk et al.

2005, 2013; Houk 2006). Thus, the expansion of reef sites

surveyed here likely reflects a greater understanding of

how nutrient pollution and fishing contributed to the dis-

tribution of modern ecological assemblages.

To date, there are few studies examining the connection

between land use, water quality, fishing pressure, and the

ecological condition of coral reef resources at whole-of-

island scales in the Pacific Ocean. We conclude that while

some of the findings are obviously recursive in nature, an

overall picture emerges. Wave energy was expected to

have a negative relationship with both fish and benthic

condition scores, but we found the opposite in that wave

energy combined with distances to human access best

predicted these assemblages. The negative relationship

between water quality and coral assemblages can also

influence fish assemblages, particularly smaller site-at-

tached fish not investigated here, with ensuing impacts to

reef resilience (Pratchett et al. 2011). However, our study

focused on larger foodfish assemblages dominated by tar-

geted herbivores and secondary consumers that often

respond positively to coral loss following disturbances

(Wilson et al. 2006; Adam et al. 2011; Russ et al. 2015).

Thus, the fishing pressure metrics used here were likely

primary drivers of these assemblages. An ongoing study is

now examining the impacts of increased sediments and
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nutrients on the demography and trophodynamics of

dominant herbivorous fish groups. This study will also help

to improve understanding of the recursive relationship

between the benthos and fish and the potential flow on

effects on coral reef structuring and function. Addressing

complex recursive relationships is of keen interest here and

beyond and is important to improving ridge-to-reef man-

agement systems.
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